Aller au menu Aller au contenu
Consultez les publications et les thèses
Laboratoire des Sciences pour la Conception, l'Optimisation et la Production de Grenoble
Consultez les publications et les thèses
Consultez les publications et les thèses

> GSCOP_RESULTATS > GSCOP_ThèsesSoutenues

Thèse Quoc Dung NGO

Auteur : Quoc Dung NGO
Directeur de thèse : Jean Marie FLAUS
Codirigée par Olivier ADROT
Date : 31 août 2012

Diagnostic de systèmes hybrides incertains par génération automatique de Relations de Redondance Analytique Symboliques évaluées par approche ensembliste.

Les activités industrielles peuvent induire des risques de nature diverse, voire conduire à des événements catastrophiques. De façon à réduire ces risques à des niveaux acceptables, à en limiter les coûts aussi bien humains, matériels que financiers et à respecter la réglementation, il est crucial  d'en prévenir la survenue (prévention) et à identifier des situations anormales en fonction d'informations récupérées sur le terrain. Ceci nécessite de résoudre deux points essentiels : détecter l'anomalie et faire un diagnostic, d'où l'importance des modèles de bon comportement qui modélisent des systèmes physique réels et les méthodes associées permettant d'effectuer la surveillance en continu. L'approche la plus utilisée dans la communauté FDI est l'approche structurelle qui consiste à construire des relations de redondance analytique (RRA). Le principe de l'approche structurelle est de prendre en compte seulement l'existence des relations entre les variables induites par les équations du modèle. En basant sur cette approche, ma thèse consiste à trouver une réponse qui satisfait un triple objectif :

1.      Extraire les relations valides à partir du modèle de bon comportement d'un système afin de prendre en compte l'évolution du système en éliminant les relations et des mesures invalides ayant pour but d'effectuer le diagnostic en ligne

2.      Construire, en utilisant une analyse symbolique couplée avec la théorie des graphes, les relations de redondance analytique symboliques (RRAS) pour la détection des défauts dans le système.

3.      Evaluer ces RRAS en utilisant le calcul par intervalle, an de prendre en compte les incertitudes présents dans les mesures, lors des tests de cohérence.

mise à jour le 13 novembre 2012

  • Tutelle CNRS
  • Tutelle Grenoble INP
  • Université Joseph Fourier
  • Tutelle UMR
Univ. Grenoble Alpes