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Introduction The Tutte–Nash-Williams-theorem

packing = edge-disjoint subgraphs

Theorem (Tutte, Nash-Williams)

In a graph D = (V ,E), there exists a packing of k spanning trees iff

eG(P) ≥ k(|P| − 1)

holds for every partition P of V , where eG(P) denotes the number of
edges that are not induced by any set of the partition.

Matroid structure behind
graphic matroid = independent sets are edge sets of forests in a graph
k -sum ofM = independent sets can be partitioned into k independent
sets ofM.
Union of k spanning trees = bases of the k -sum of the graphic matroid.
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Introduction Edmonds’ theorem

s-arborescence = directed tree s.t. each node is reachable from its
root on a one-way path

% = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s,A), there exists a packing of k
spanning s-arborescences iff

%(X ) ≥ k

holds for every ∅ 6= X ⊆ V.
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% = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s,A), there exists a packing of k
spanning s-arborescences iff

%(X ) ≥ k

holds for every ∅ 6= X ⊆ V.

Remark
The Tutte–Nash-Williams-theorem follows from Edmonds’ theorem by
using Frank’s orientation theorems.
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Let the independent sets ofM0 be the arc sets of D with maximum
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Matroid structure behind
Let the independent sets ofM0 be the arc sets of D with maximum
in-degree k on V = direct sum of the uniform matroids of rank k on the
incoming arc sets of all vertices in V .
Union of k spanning arborescences = common bases of the k -sum of
the graphic matroid andM0. ⇒ Efficient algorithm for the weighted
problem through the weighted matroid intersection algorithm.Csaba Király (ELTE-EGRES) Zoli’s arborescence packing theorems Zoli 50 3 / 24



Introduction Generalizations

LetM2 be the direct sum of matroidsMv on the incoming arc sets of
all v ∈ V , we get the following.
M2-restricted packing = the arc set is independent inM2.
∂Z (X ) = the arc set that enters X from Z − X .

Theorem (Frank)

In a rooted digraph D = (V + s,A) with a matroidM2 = ⊕v∈VMv on A
as above, there exists anM2-restricted packing of k spanning
s-arborescences iff

r2(∂V+s(X )) ≥ k

holds for every ∅ 6= X ⊆ V.

Proof.
ChangeM0 toM2 in the previous formulation and use Edmonds’
theorem.
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Introduction Generalizations

Kamiyama, Katoh, Takizawa: If there are no spanning
arborescences... When is it possible to pack edge-disjoint “maximal”
arborescences?
Reachability s-arborescence in D: an s-arborescence that spans each
vertex which is reachable from s on a one-way path of D.

Theorem (Kamiyama, Katoh and Takizawa)

In a digraph D = (V ,A), let R := {s1, ..., sk} be a multiset of vertices in
V . There exists a packing of reachability si -arborescences in D
(i = 1, . . . , k) iff

%(X ) ≥ p′R(X )

holds for every X ⊆ V where p′R(X ) denotes the number of si ’s for
which X is reachable from si and si 6∈ X.
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Matroid-based packings The problems

Definition
1 matroid-rooted graph/digraph (G = (V + s,E),M1)/

(D = (V + s,A),M1): a matroidM1 is given on the set of root
edges/arcs (leaving s).

2 M1-based packing of (s, t)-paths: if the root edges/arcs form a
base ofM1.

3 M1-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM1-based
∀t ∈ V .

a

b

c d

a b c d

s

Figure: a matroid-rooted digraph
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Figure: Not anM1-based packing of (s, t)-paths
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Matroid-based packings The problems

Definition
1 matroid-rooted graph/digraph (G = (V + s,E),M1)/

(D = (V + s,A),M1): a matroidM1 is given on the set of root
edges/arcs (leaving s).

2 M1-based packing of (s, t)-paths: if the root edges/arcs form a
base ofM1.

3 M1-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM1-based
∀t ∈ V .

Remark
Menger type characterization: ∃ anM1-based packing of (s, t)-paths
iff %(X ) ≥ r1(∂s(V ))− r1(∂s(X )) (∀X ⊆ V ).
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(D = (V + s,A),M1): a matroidM1 is given on the set of root
edges/arcs (leaving s).

2 M1-based packing of (s, t)-paths: if the root edges/arcs form a
base ofM1.

3 M1-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM1-based
∀t ∈ V .

Remark
Menger type characterization: ∃ anM1-based packing of (s, t)-paths
iff %(X ) ≥ r1(∂s(V ))− r1(∂s(X )) (∀X ⊆ V ).

Question
Can the above theorems be extended forM1-based packings?
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Matroid-based packings Undirected case

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s,E),M) there exists an
M1-based packing of spanning s-trees iff

eG(P) ≥ r1(∂s(V ))−
∑
X∈P

r1(∂s(X )) for every partition P of V .

Matroid structure behind
Katoh and Tanigawa also proved that theM1-based packings of
s-trees form the bases of the matroid induced by the following
non-negative integer valued, monotone and intersecting submodular
function:

b′(H) := k |V (H)− s| − k + r1(H ∩ ∂s(V )) ∀∅ 6= H ⊆ A,

i.e. the matroidMb′ with independent sets

Ib′ := {B ⊆ A : |H| ≤ b′(H) ∀∅ 6= H ⊆ B}.
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eG(P) ≥ r1(∂s(V ))−
∑
X∈P
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Remark
Motivation from rigidity theory! (Title of this workshop: Combinatorial
Optimization Day: Orientations, Matchings and Rigidity.)
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Matroid-based packings Directed case

Theorem (Durand de Gevigney, Nguyen and Szigeti)

In a matroid-rooted digraph (D = (V + s,A),M1) there exists an
M1-based packing of spanning s-arborescences iff there exists an
M1-based packing of (s, v)-paths for every v ∈ V, i.e.

%(X ) ≥ r1(M)− r1(∂s(X )) (∀∅ 6= X ⊆ V ).

Remark
The Katoh–Tanigawa-theorem follows from this theorem by using
Frank’s orientation theorems.

Matroid structure behind
Edge sets ofM1-based packing of s-arborescences = common bases
ofMb′ andM0.
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Matroid-based packings Directed case

Theorem
In a matroid-rooted digraph (D = (V + s,A),M1) with another matroid
M2 = ⊕v∈VMv on A, there exists anM1-basedM2-restricted
packing of spanning s-arborescences iff

r1(F ) + r2(∂(X )− F ) ≥ r1(∂s(V )) for all ∅ 6= X ⊆ V and F ⊆ ∂s(X ).

Proof.
ChangeM0 toM2 in the previous formulation and use the Durand de
Gevigney–Nguyen–Szigeti-theorem.
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Király, Kobayashi)

In a matroid-rooted digraph (D = (V + s,A),M1) there exists an
M1-based packing of spanning s-arborescences iff

%(X ) ≥ r1(M)− r1(∂s(X )) (∀∅ 6= X ⊆ V ).
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Matroid-based packings A dead end

Examples
1 Free : all subsets of a set,
2 Graphic : edge-sets of forests of a graph,
3 Transversal: end-nodes in S of matchings of bipartite graph

(S,T ;E)

4 Fano: subsets of sets of size 3 not being a line in the Fano plane.

a

b

c d

T

S
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Király, Kobayashi)

In a matroid-rooted digraph (D = (V + s,A),M1) there exists an
M1-based packing of spanning s-arborescences iff

%(X ) ≥ r1(M)− r1(∂s(X )) (∀∅ 6= X ⊆ V ).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroidM1

has rank at most 2 or
is graphic or
is transversal.

The conjecture is false!
The corresponding decision problem is NP-hard.
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Matroid-based packings A dead end

Counterexample
Digraph : acyclic, in-degree 3 for all v ∈ V , 46 nodes and 135 arcs,
Matroid : parallel extension of Fano with 64 elements,
Remark : matroid-based packing of (s, t)-paths exists for all t .
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Matroid-based packings A dead end

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroidM1

has rank at most 2 or
is graphic or
is transversal.

The conjecture is false!
The corresponding decision problem is NP-hard.

Remarks
M1-based packing of spanning s-trees: same results by
orientation and the structure of the counterexample
M1-basedM2-restricted packing of spanning s-arborescences:
same positive results
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M1-basedM2-restricted packing of spanning s-arborescences:
same positive results
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Reachability-based packings Preliminaries

P(X ) = {v ∈ V : ∃ a one-way path from v to X}. (X ⊆ P(X ))
M1-reachability-based packing of (s, t)-paths: if the root arcs form a
base ofM1|∂s(P(t)).
M1-reachability-based packing of s-arborescences: if the packing of
(s, t)-paths provided by the arborescences isM1-reachability-based
∀t ∈ V .

Theorem (K.)

In a matroid-rooted digraph (D = (V + s,A),M1) there exists an
M1-reachability-based packing of s-arborescences iff

%(X ) ≥ r1(∂s(P(X )))− r1(∂s(X )) (∀X ⊆ V ).

Csaba Király (ELTE-EGRES) Zoli’s arborescence packing theorems Zoli 50 15 / 24



Reachability-based packings Matroids from bi-set functions

Definitions

Biset X = (XO,XI): XI ⊆ XO ⊆ V
P2 = all bisets on V
X ∩ Y = (XO ∩ YO,XI ∩ YI)
X ∪ Y = (XO ∪ YO,XI ∪ YI)
X and Y are intersecting = XI ∩ YI 6= ∅
b : P2 → Z+ ∪ {∞} is intersecting submodular =
b(X) + b(Y) ≥ b(X ∪ Y) + b(X ∩ Y) for every intersecting X ,Y ∈ P2.
D = (V ,A), B ⊆ A, X ∈ P2.
B(X) = arcs in B with tail in XO and head in XI.
iB(X) = |B(X)|
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Reachability-based packings Matroids from bi-set functions

Matroids from submodular bi-set functions

Theorem
Let D = (V ,A) be a digraph and b : P2 → Z+ ∪ {∞} an intersecting
submodular bi-set function. Then

I := {B ⊆ A : iB(X) ≤ b(X) ∀X ∈ P2}

forms the family of independent sets of a matroidMb on A.
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

We give the construction directly forM2-restricted
M1-reachability-based packings.

Assumptions

(A1) ∂s(v) is independent inM1 for every v ∈ V ;
(A2) each root arc belongs to every base ofM2;
(A3) r2(∂(v)) ≤ r1(∂s(P(v))) for all v ∈ V .

These can be assumed by simple modifications of the input (adding an
extra vertex in the middle of each root arc and truncatingM2.)
When the packing exists, in fact, (A3) turns to

(A3’) r2(∂(v)) = r1(∂s(P(v))) =: m(v) for all v ∈ V .
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

u∼v = P(u) = P(v)
Atoms = equivalence classes of ∼

F := {X ∈ P2 : ∃ atom A : ∅ 6= XI ⊆ A, (XO \ XI) ∩ A = ∅},
IX := {ei ∈ ∂A

s (V ) : XI ⊆ Ui,ei /∈ ∂A
s (XI), (XO \ XI) ∩ Ui = ∅} (∀X ∈ F),

JX := {ei ∈ ∂A
s (V ) : XI ⊆ Ui} \ IX (∀X ∈ F),

b(X) := m̃(XI)− |∂A
s (XI)| − r1(IX ∪ JX) + r1(JX) (∀X ∈ F),

:= +∞ (∀X 6∈ F).

Remark

IX ∪ JX = ∂s(P(XI)).
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Reachability-based packings Matroid structure behind

b(X) := m̃(XI)− |∂A
s (XI)| − (r1(IX ∪ JX)− r1(JX)) (∀X ∈ F)

Lemma (implicitly in Bérczi, T. Király, Kobayashi)

Let B ⊆ A for a given D = (V + s,A). The following two conditions are
equivalent:

|∂B
V (X )| ≥ r1(∂

A
s (PD(X )))− r1(∂

A
s (X )) (∀X ⊆ V )

|∂B
V (X)| ≥ r1(IX ∪ JX)− r1(JX) (∀X ∈ F)

Theorem (K.)

In a matroid-rooted digraph (D = (V + s,A),M1) there exists an
M1-reachability-based packing of s-arborescences iff

%(X ) = |∂A(X )| ≥ r1(∂
A
s (P(X )))− r1(∂

A
s (X )) (∀X ⊆ V ).
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Reachability-based packings Matroid structure behind

Lemma
b is an intersecting submodular bi-set function.

I∗ := {B ⊆ A : iB(X) ≤ b(X) ∀X ∈ P2}

forms the family of independent sets of a matroidM∗ on A.

Theorem
Let (D = (V + s,A),M1) be a matroid-rooted digraph with another
matroidM2 = ⊕v∈VMv on A. Suppose that (A1), (A2) and (A3’) are
satisfied. Then B ⊆ A is the arc set of anM1-reachability-based
M2-restricted packing of s-arborescences if and only if B is a common
independent set ofM2 andM∗ of size m̃(V ).
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Reachability-based packings Corollaries

Theorem
Let (D = (V + s,A),M1) be a matroid-rooted digraph with another
matroidM2 = ⊕v∈VMv on A. There exists a polynomial algorithm to
find anM1-reachability-basedM2-restricted packing of
s-arborescences in D of minimum weight if D has at least one such
packing.

Theorem
Let (D = (V + s,A),M1) be a matroid-rooted digraph with another
matroidM2 = ⊕v∈VMv on A. There exists anM1-reachability-based
M2-restricted packing of s-arborescences in D if and only if

r1(F ) + r2(∂(X )− F ) ≥ r1(∂s(P(X ))) for all X ⊆ V and F ⊆ ∂s(X ).
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Concluding remarks A proof

Theorem
Zoli still works on this topic.

Proof.
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Concluding remarks A proof

Thank you for your attention!
Happy Birthday Zoli!
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