A sequential game on matroids

Denis Cornaz

University Paris-Dauphine

- Oefinition, example
- Properties
- 8 Remarks and open questions

< 同 ▶

(Gourvès and Monnot 2013)

Given a matroid *M* on *E*, let $A := \emptyset$ and $B := \emptyset$.

While $A \cup B \notin \mathcal{B}(M)$ Zoltan chooses $a \in E \setminus (A \cup B)$ so that $\{a\} \cup A \cup B \in \mathcal{I}(M)$ $A := A \cup \{a\}$ Then I choose $b \in E \setminus (A \cup B)$ so that $\{b\} \cup A \cup B \in \mathcal{I}(M)$ $B := B \cup \{b\}.$

Zoltan has an evaluation $w \in \mathbb{Z}^E$ and he wants to maximize w(A) knowing

- My evaluation, and
- 2 At each step, I choose the best possible element for me

(Gourvès and Monnot 2013)

Given a matroid *M* on *E*, let $A := \emptyset$ and $B := \emptyset$.

While $A \cup B \notin \mathcal{B}(M)$ Zoltan chooses $a \in E \setminus (A \cup B)$ so that $\{a\} \cup A \cup B \in \mathcal{I}(M)$ $A := A \cup \{a\}$ Then I choose $b \in E \setminus (A \cup B)$ so that $\{b\} \cup A \cup B \in \mathcal{I}(M)$ $B := B \cup \{b\}.$

Zoltan has an evaluation $w \in \mathbb{Z}^{E}$ and he wants to maximize w(A) knowing

- My evaluation, and
- At each step, I choose the best possible element for me (unique)

Graphic matroid on $E = \{1, \dots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \dots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \dots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \ldots, 14\}$

If I were alone I would take $B = \{1, ..., 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \dots, 14\}$

If I were alone I would take $B = \{1, \dots, 9\}$, and Zoltan's evaluation is

$$e = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ w_e = \begin{vmatrix} 4 & 3 & 1 & 2 & 1 & 2 & 1 & 1 & 6 & 3 & 1 & 1 & 3 & 4 \end{vmatrix}$$

Graphic matroid on $E = \{1, \dots, 14\}$ with base $B = \{1, \dots, 9\}$

Solution :

Round	1	2	3	4	5
Zoltan picks	1	13	10	14	9
I pick	2	4	6	8	•

Image: A = A

Notation. For any matroid M with a base B, we denote by $\mathcal{A}(M, B)$ the set of Zoltan's possible subsets.

ex. *M* graphic with $B = \{1, 2, 3\}$

 $\mathcal{A}(M,B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}\}$

Notation. For any matroid M with a base B, we denote by $\mathcal{A}^{\uparrow}(M, B)$ the set of Zoltan's possible final sets.

ex. M graphic with $B=\{1,2,3\}$

 $\mathcal{A}^{\uparrow}(M,B) = \{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

ex. *M* graphic with $B = \{1, \ldots, 9\}$

 $\{1,9,10,13,14\},\{2,3,5\}\in\mathcal{A} \hspace{1.5cm} \{1,2\},\{2,5,10\}\notin\mathcal{A}$

< A > <

6/10

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

ex. $A = \{2, 4, 9, 10, 13\} \notin A$

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

ex. $A = \{2, 9, 10, 13\} \in \mathcal{A}$

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

ex. $A = \{2, 9, 10, 13\} \in \mathcal{A}$

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

ex. $A = \{2, 6, 9, 10, 13\} \notin A$

Lemma 1. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \subseteq E$, testing if $A \in \mathcal{A}(M, B)$ is polynomial.

Pf. Let B' be my prefered base in M/A, let $B \setminus B' = \{e_1, \ldots, e_k\}$ (sorted), and let

$$F_j := \begin{cases} \{e_j\} & \text{if } e_j \in A \\ C_j \cap A & \text{otherwise (circuit } C_j \subseteq \{e_j\} \cup A \cup B) \end{cases}$$

Then

$$(a_1, b_1), \dots, (a_k, b_k)$$
 is feasible $\iff F_j \subseteq \{a_1, \dots, a_{e_j-j+1}\}$ $(\forall j)$
 $A \in \mathcal{A} \iff \Big| \bigcup_{1 \le i \le j} F_i \Big| \le e_j - j + 1$ $(\forall j)$

- 4 同 6 4 日 6 4 日 6

6/10

Lemma 2. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \in \mathcal{A}^{\uparrow}(M, B)$ then

 $\forall x \in E \setminus A, \exists y \in A : A \cup \{x\} \setminus \{y\} \in \mathcal{A}^{\uparrow}(M, B)$

Lemma 2. Given any matroid M with a base $B = \{1, \ldots, r(M)\}$, and $A \in \mathcal{A}^{\uparrow}(M, B)$ then

$$\forall x \in E \setminus A, \exists y \in A : A \cup \{x\} \setminus \{y\} \in \mathcal{A}^{\uparrow}(M, B)$$

ex. *M* graphic with $B = \{1, 2, 3, 4, 5\}$

Lemma 2. Given any matroid M with a base $B = \{1, ..., r(M)\}$, and $A \in \mathcal{A}^{\uparrow}(M, B)$ then

$$\forall x \in E \setminus A, \exists y \in A : A \cup \{x\} \setminus \{y\} \in \mathcal{A}^{\uparrow}(M, B)$$

Pf. Zoltan and I played $(a_1, b_1), \ldots, (a_m, b_m)$. Let $x \in E \setminus A$ and let *i* minimum so that Zoltan cannot take x if he plays

$$(a_1, b_1), \ldots, (a_i, \ldots)$$

Apply circuits axiom to show that, if Zoltan plays

$$(a_1, b_1), \ldots, (x, \ldots)$$

and then always choosing the possible a_j with j minimum, then he will have $A \cup \{x\} \setminus \{a_k\}$ (for some $k \ge i$).

Remark 1. In general, even if *M* is graphic, $\mathcal{A}^{\uparrow}(M, B)$ is not the set of basis of a matroid.

A 10

- - E - - E

Remark 1. In general, even if *M* is graphic, $\mathcal{A}^{\uparrow}(M, B)$ is not the set of basis of a matroid.

ex. *M* graphic with $B = \{1, 2, 3, 4, 5\}$

 $A_1 = \{2, 3, 5\}$ and $A_2 = \{4, 5, 6\}$

Remark 1. In general, even if *M* is graphic, $\mathcal{A}^{\uparrow}(M, B)$ is not the set of basis of a matroid.

ex. *M* graphic with $B = \{1, 2, 3, 4, 5\}$

 ${\cal A}_1=\{2,3,5\}$ and ${\cal A}_2'=\{5,6\}$

Remark 1. In general, even if *M* is graphic, $\mathcal{A}^{\uparrow}(M, B)$ is not the set of basis of a matroid.

ex. *M* graphic with $B = \{1, 2, 3, 4, 5\}$

 $C_1 = \{2, 5, 6\}$ and $C_2 = \{3, 5, 6\}$

Remark 1. In general, even if *M* is graphic, $\mathcal{A}^{\uparrow}(M, B)$ is not the set of basis of a matroid.

ex. *M* graphic with $B = \{1, 2, 3, 4, 5\}$

f(2356) + f(56) > f(256) + f(356)

Remark 2. If *M* is free and $B = \{1, ..., r\}$, then $\mathcal{A}(M, B)$ is the set of bases of a laminar matroid with rank function satisfying

 $r(\{1,\ldots,2i\}) \leq i$

Remark 2. If *M* is free and $B = \{1, ..., r\}$, then $\mathcal{A}(M, B)$ is the set of bases of a laminar matroid with rank function satisfying

$$r(\{1,\ldots,2i\}) \leq i$$

However, it is not, in general, the intersection of M and this laminar matroid.

ex. 356 in

Remark 2. If *M* is free and $B = \{1, ..., r\}$, then $\mathcal{A}(M, B)$ is the set of bases of a laminar matroid with rank function satisfying

$$r(\{1,\ldots,2i\})\leq i$$

In fact, it is not, in general, the intersection of two matroids.

ex. $C = \{12, 156, 256\} \cup \{12, 134, 234\} \cup \{356\}$

Open questions

- Can we find Zoltan's best strategy in polynomial time?
- **2** What kind of things are Zoltan's sets $\mathcal{A}(M, B)$?

A D